Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters










Publication year range
1.
JCI Insight ; 9(9)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38716728

ABSTRACT

The importance of the proper localization of most receptors at the cell surface is often underestimated, although this feature is essential for optimal receptor response. Endospanin 1 (Endo1) (also known as OBRGRP or LEPROT) is a protein generated from the same gene as the human leptin receptor and regulates the trafficking of proteins to the surface, including the leptin receptor. The systemic role of Endo1 on whole-body metabolism has not been studied so far. Here, we report that general Endo1-KO mice fed a high-fat diet develop metabolically healthy obesity with lipid repartitioning in organs and preferential accumulation of fat in adipose tissue, limited systematic inflammation, and better controlled glucose homeostasis. Mechanistically, Endo1 interacts with the lipid translocase CD36, thus regulating its surface abundance and lipid uptake in adipocytes. In humans, the level of Endo1 transcripts is increased in the adipose tissue of patients with obesity, but low levels rather correlate with a profile of metabolically healthy obesity. We suggest here that Endo1, most likely by controlling CD36 cell surface abundance and lipid uptake in adipocytes, dissociates obesity from diabetes and that its absence participates in metabolically healthy obesity.


Subject(s)
Adipose Tissue , CD36 Antigens , Diet, High-Fat , Mice, Knockout , Obesity , Animals , Female , Humans , Male , Mice , Adipocytes/metabolism , Adipose Tissue/metabolism , CD36 Antigens/metabolism , CD36 Antigens/genetics , Diet, High-Fat/adverse effects , Glucose/metabolism , Lipid Metabolism/genetics , Mice, Inbred C57BL , Obesity/metabolism , Obesity/genetics
2.
J Lipid Res ; : 100548, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38649096

ABSTRACT

DHA is abundant in brain where it regulates cell survival, neurogenesis and neuroinflammation. DHA can be obtained from the diet or synthesized from alpha-linolenic acid (ALA; 18:3n-3) via a series of desaturation and elongation reactions occurring in the liver. Tracer studies suggest that dietary DHA can downregulate its own synthesis, but the mechanism remains undetermined and is the primary objective of this paper. First, we show by tracing 13C content (δ13C) of DHA via compound-specific isotope analysis (CSIA), that following low dietary DHA, the brain receives DHA synthesized from ALA. We then show that dietary DHA increases mouse liver and serum EPA, which is dependant on ALA. Furthermore, by CSIA we demonstrate that the source of increased EPA is slowed EPA metabolism, not increased DHA retroconversion as previously assumed. DHA feeding alone or with ALA lowered liver elongation of very long-chain (ELOVL2, EPA elongation) enzyme activity despite no change in protein content. To further evaluate the role of ELOVL2, a liver-specific Elovl2 knockout was generated showing that DHA feeding in the presence or absence of a functional liver ELOVL2 yields similar results. An enzyme competition assay for EPA elongation suggests both uncompetitive and non-competitive inhibition by DHA depending on DHA levels. To translate our findings, we show that DHA supplementation in men and women increases EPA levels in a manner dependent on a SNP (rs953413) in the ELOVL2 gene. In conclusion, we identify a novel feedback inhibition pathway where dietary DHA downregulates its liver synthesis by inhibiting EPA elongation.

3.
Brain Behav Immun Health ; 37: 100745, 2024 May.
Article in English | MEDLINE | ID: mdl-38511150

ABSTRACT

Preterm birth and its related complications have become more and more common as neonatal medicine advances. The concept of "developmental origins of health and disease" has raised awareness of adverse perinatal events in the development of diseases later in life. To explore this concept, we propose that encephalopathy of prematurity (EoP) as a potential pro-inflammatory early life event becomes a novel risk factor for metabolic diseases in children/adolescents and adulthood. Here, we review epidemiological evidence that links preterm birth to metabolic diseases and discuss possible synergic roles of preterm birth and neuroinflammation from EoP in the development of metabolic diseases. In addition, we explore theoretical underlying mechanisms regarding developmental programming of the energy control system and HPA axis.

4.
Food Res Int ; 177: 113850, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38225125

ABSTRACT

Interesterified fats have been used to replace trans-fat in ultra-processed foods. However, their metabolic effects are not completely understood. Hence, this study aimed to investigate the effects related to glucose homeostasis in response to interesterified palm oil or refined palm oil intake. Four-week-old male Swiss mice were randomly divided into four experimental groups and fed the following diets for 8 weeks: a normocaloric and normolipidic diet containing refined palm oil (PO group) or interesterified palm oil (IPO group); a hypercaloric and high-fat diet containing refined PO (POHF group) or interesterified PO (IPOHF group). Metabolic parameters related to body mass, adiposity and food consumption showed no significant differences. As for glucose homeostasis parameters, interesterified palm oil diets (IPO and IPOHF) resulted in higher glucose intolerance than unmodified palm oil diets (PO and POHF). Euglycemic-hyperinsulinemic clamp assessment showed a higher endogenous glucose production in the IPO group compared with the PO group. Moreover, the IPO group showed significantly lower p-AKT protein content (in the muscle and liver tissues) when compared with the PO group. Analysis of glucose-stimulated static insulin secretion (11.1 mmol/L glucose) in isolated pancreatic islets showed a higher insulin secretion in animals fed interesterified fat diets (IPO and IPOHF) than in those fed with palm oil (PO and POHF). Interesterified palm oil, including in normolipidic diets, can impair insulin signaling in peripheral tissues and increase insulin secretion by ß-cells, characterizing insulin resistance in mice.


Subject(s)
Insulin Resistance , Male , Animals , Mice , Palm Oil , Plant Oils , Dietary Fats , Insulin Secretion , Fatty Acids/analysis , Diet, High-Fat/adverse effects , Glucose
5.
Br J Nutr ; 131(5): 749-761, 2024 03 14.
Article in English | MEDLINE | ID: mdl-37877265

ABSTRACT

Long-chain n-3 PUFA (LC n-3 PUFA) prevent, in rodents, insulin resistance (IR) induced by a high-fat and/or fructose diet but not IR induced by glucocorticoids. In humans, contrasting effects have also been reported. We investigated their effects on insulin sensitivity, feed intake (FI) and body weight gain in genetically insulin resistant male obese (fa/fa) Zucker (ZO) rats during the development of obesity. ZO rats were fed a diet supplemented with 7 % fish oil (FO) + 1 % corn oil (CO) (wt/wt) (ZOFO), while the control group was fed a diet containing 8 % fat from CO (wt/wt) (ZOCO). Male lean Zucker (ZL) rats fed either FO (ZLFO) or CO (ZLCO) diet were used as controls. FO was a marine-derived TAG oil containing EPA 90 mg/g + DHA 430 mg/g. During an oral glucose tolerance test, glucose tolerance remained unaltered by FO while insulin response was reduced in ZOFO only. Liver insulin sensitivity (euglycaemic-hyperinsulinaemic clamp + 2 deoxyglucose) was improved in ZOFO rats, linked to changes in phosphoenolpyruvate carboxykinase expression, activity and glucose-6-phosphatase activity. FI in response to intra-carotid insulin/glucose infusion was decreased similarly in ZOFO and ZOCO. Hypothalamic ceramides levels were lower in ZOFO than in ZOCO. Our study demonstrates that LC n-3 PUFA can minimise weight gain, possibly by alleviating hypothalamic lipotoxicity, and liver IR in genetically obese Zucker rats.


Subject(s)
Fatty Acids, Omega-3 , Insulin Resistance , Humans , Male , Rats , Animals , Insulin Resistance/physiology , Fish Oils/pharmacology , Rats, Zucker , Blood Glucose/metabolism , Insulin/metabolism , Obesity/metabolism , Glucose/pharmacology , Eating , Weight Gain , Fatty Acids, Unsaturated/pharmacology , Corn Oil/pharmacology , Fatty Acids, Omega-3/pharmacology
6.
Metabolism ; 150: 155696, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37804881

ABSTRACT

BACKGROUND: Growing evidence demonstrates the role of the striatal dopamine system in the regulation of glucose metabolism. Treatment with dopamine antagonists is associated with insulin resistance and hyperglycemia, while dopamine agonists are used in treatment of type 2 diabetes. The mechanism underlying striatal dopamine effects in glucose metabolism, however is not fully understood. Here, we provide mechanistic insights into the role of nucleus accumbens shell (sNAc) dopaminergic signaling in systemic glucose metabolism. METHODS: Endogenous glucose production (EGP), blood glucose and mRNA expression in the lateral hypothalamic area (LHA) in male Wistar rats were measured following infusion of vanoxerine (VNX, dopamine reuptake inhibitor) in the sNAc. Thereafter, we analyzed projections from sNAc Drd1-expressing neurons to LHA using D1-Cre male Long-Evans rats, Cre-dependent viral tracers and fluorescence immunohistochemistry. Brain slice electrophysiology in adult mice was used to study spontaneous excitatory postsynaptic currents of sNAc Drd1-expressing neurons following VNX application. Finally, we assessed whether GABAergic LHA activity and hepatic vagal innervation were required for the effect of sNAc-VNX on glucose metabolism by combining infusion of sNAc-VNX with LHA-bicuculline, performing vagal recordings and combining infusion of sNAc-VNX with hepatic vagal denervation. RESULTS: VNX infusion in the sNAc strongly decreased endogenous glucose production, prevented glucose increases over time, reduced Slc17A6 and Hcrt mRNA in LHA, and increased vagal activity. Furthermore, sNAc Drd1-expressing neurons increased spontaneous firing following VNX application, and viral tracing of sNAc Drd1-expressing neurons revealed direct projections to LHA with on average 67 % of orexin cells directly targeted by sNAc Drd1-expressing neurons. Importantly, the sNAc-VNX-induced effect on glucose metabolism was dependent on GABAergic signaling in the LHA and on intact hepatic vagal innervation. CONCLUSIONS: We show that sNAc dopaminergic signaling modulates hepatic glucose metabolism through GABAergic inputs to glutamatergic LHA cells and hepatic vagal innervation. This demonstrates that striatal control of glucose metabolism involves a dopaminergic sNAc-LHA-liver axis and provides a potential explanation for the effects of dopamine agonists and antagonists on glucose metabolism.


Subject(s)
Diabetes Mellitus, Type 2 , Hypothalamic Area, Lateral , Rats , Male , Mice , Animals , Hypothalamic Area, Lateral/metabolism , Nucleus Accumbens/metabolism , Dopamine/metabolism , Rodentia/metabolism , Dopamine Agonists/metabolism , Dopamine Agonists/pharmacology , Diabetes Mellitus, Type 2/metabolism , Rats, Wistar , Rats, Long-Evans , Glucose/metabolism , Liver/metabolism , RNA, Messenger/metabolism
7.
J Neuroendocrinol ; 35(12): e13344, 2023 12.
Article in English | MEDLINE | ID: mdl-37857383

ABSTRACT

OBJECTIVES: Intensive insulin therapy provides optimal glycemic control in patients with diabetes. However, intensive insulin therapy causes so-called iatrogenic hypoglycemia as a major adverse effect. The ventromedial hypothalamus (VMH) has been described as the primary brain area initiating the counter-regulatory response (CRR). Nevertheless, the VMH receives projections from other brain areas which could participate in the regulation of the CRR. In particular, studies suggest a potential role of the serotonin (5-HT) network. Thus, the objective of this study was to determine the contribution of 5-HT neurons in CRR control. METHODS: Complementary approaches have been used to test this hypothesis in quantifying the level of 5-HT in several brain areas by HPLC in response to insulin-induced hypoglycemia, measuring the electrical activity of dorsal raphe (DR) 5-HT neurons in response to insulin or decreased glucose level by patch-clamp electrophysiology; and measuring the CRR hormone glucagon as an index of the CRR to the modulation of the activity of 5-HT neurons using pharmacological or pharmacogenetic approaches. RESULTS: HPLC measurements show that the 5HIAA/5HT ratio is increased in several brain regions including the VMH in response to insulin-induced hypoglycemia. Patch-clamp electrophysiological recordings show that insulin, but not decreased glucose level, increases the firing frequency of DR 5-HT neurons in the DR. In vivo, both the pharmacological inhibition of 5-HT neurons by intraperitoneal injection of the 5-HT1A receptor agonist 8-OH-DPAT or the chemogenetic inhibition of these neurons reduce glucagon secretion, suggesting an impaired CRR. CONCLUSION: Taken together, these data highlight a new neuronal network involved in the regulation of the CRR. In particular, this study shows that DR 5-HT neurons detect iatrogenic hypoglycemia in response to the increased insulin level and may play an important role in the regulation of CRR.


Subject(s)
Glucagon , Hypoglycemia , Humans , Serotonergic Neurons , Serotonin/pharmacology , Hypoglycemia/chemically induced , Insulin/pharmacology , Glucose , Iatrogenic Disease
8.
Article in English | MEDLINE | ID: mdl-37224999

ABSTRACT

Ceramides (Cer) have been shown as lipotoxic inducers, which disturb numerous cell-signaling pathways, leading to metabolic disorders such as type 2 diabetes. In this study, we aimed to determine the role of de novo hepatic ceramide synthesis in energy and liver homeostasis in mice. We generated mice lacking serine palmitoyltransferase 2 (Sptlc2), the rate limiting enzyme of ceramide de novo synthesis, in liver under albumin promoter. Liver function, glucose homeostasis, bile acid (BA) metabolism and hepatic sphingolipids content were assessed using metabolic tests and LC-MS. Despite lower expression of hepatic Sptlc2, we observed an increased concentration of hepatic Cer, associated with a 10-fold increase in neutral sphingomyelinase 2 (nSMase2) expression, and a decreased sphingomyelin content in the liver. Sptlc2ΔLiv mice were protected against obesity induced by high fat diet and displayed a defect in lipid absorption. In addition, an important increase in tauro-muricholic acid was associated with a downregulation of the nuclear BA receptor FXR target genes. Sptlc2 deficiency also enhanced glucose tolerance and attenuated hepatic glucose production, while the latter effect was dampened in presence of nSMase2 inhibitor. Finally, Sptlc2 disruption promoted apoptosis, inflammation and progressive development of hepatic fibrosis, worsening with age. Our data suggest a compensatory mechanism to regulate hepatic ceramides content from sphingomyelin hydrolysis, with deleterious impact on liver homeostasis. In addition, our results show the involvement of hepatic sphingolipid modulation in BA metabolism and hepatic glucose production in an insulin-independent manner, which highlight the still under-researched role of ceramides in many metabolic functions.


Subject(s)
Ceramides , Diabetes Mellitus, Type 2 , Animals , Mice , Bile Acids and Salts/metabolism , Ceramides/metabolism , Diabetes Mellitus, Type 2/metabolism , Glucose/metabolism , Homeostasis , Liver/metabolism , Serine/metabolism , Serine C-Palmitoyltransferase/metabolism , Sphingolipids/metabolism , Sphingomyelins/metabolism
9.
Commun Biol ; 6(1): 269, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36918710

ABSTRACT

Innate immune mediators of pathogen clearance, including the secreted C-type lectins REG3 of the antimicrobial peptide (AMP) family, are known to be involved in the regulation of tissue repair and homeostasis. Their role in metabolic homeostasis remains unknown. Here we show that an increase in human REG3A improves glucose and lipid homeostasis in nutritional and genetic mouse models of obesity and type 2 diabetes. Mice overexpressing REG3A in the liver show improved glucose homeostasis, which is reflected in better insulin sensitivity in normal weight and obese states. Delivery of recombinant REG3A protein to leptin-deficient ob/ob mice or wild-type mice on a high-fat diet also improves glucose homeostasis. This is accompanied by reduced oxidative protein damage, increased AMPK phosphorylation and insulin-stimulated glucose uptake in skeletal muscle tissue. Oxidative damage in differentiated C2C12 myotubes is greatly attenuated by REG3A, as is the increase in gp130-mediated AMPK activation. In contrast, Akt-mediated insulin action, which is impaired by oxidative stress, is not restored by REG3A. These data highlight the importance of REG3A in controlling oxidative protein damage involved in energy and metabolic pathways during obesity and diabetes, and provide additional insight into the dual function of host-immune defense and metabolic regulation for AMP.


Subject(s)
Anti-Infective Agents , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Insulin Resistance , Mice , Humans , Animals , Mice, Obese , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Experimental/metabolism , AMP-Activated Protein Kinases/metabolism , Glucose/metabolism , Obesity/genetics , Insulin/pharmacology , Homeostasis , Anti-Infective Agents/pharmacology
10.
Sci Adv ; 8(49): eade7823, 2022 12 09.
Article in English | MEDLINE | ID: mdl-36490341

ABSTRACT

PIK3CA-related overgrowth syndrome (PROS) is a genetic disorder caused by somatic mosaic gain-of-function mutations of PIK3CA. Clinical presentation of patients is diverse and associated with endocrine disruption. Adipose tissue is frequently involved, but its role in disease development and progression has not been elucidated. Here, we created a mouse model of PIK3CA-related adipose tissue overgrowth that recapitulates patient phenotype. We demonstrate that PIK3CA mutation leads to GLUT4 membrane accumulation with a negative feedback loop on insulin secretion, a burst of liver IGFBP1 synthesis with IGF-1 sequestration, and low circulating levels. Mouse phenotype was mainly driven through AKT2. We also observed that PIK3CA mutation induces metabolic reprogramming with Warburg-like effect and protein and lipid synthesis, hallmarks of cancer cells, in vitro, in vivo, and in patients. We lastly show that alpelisib is efficient at preventing and improving PIK3CA-adipose tissue overgrowth and reversing metabolomic anomalies in both animal models and patients.


Subject(s)
Adipose Tissue , Class I Phosphatidylinositol 3-Kinases , Gain of Function Mutation , Animals , Mice , Adipose Tissue/metabolism , Class I Phosphatidylinositol 3-Kinases/genetics , Class I Phosphatidylinositol 3-Kinases/metabolism , Gain of Function Mutation/genetics , Mutation , Phenotype
11.
Heliyon ; 8(7): e09944, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35874080

ABSTRACT

The aim of our study was to test the hypothesis that administration of Regenerating islet-derived protein 3α (Reg3α), a protein described as having protective effects against oxidative stress and anti-inflammatory activity, could participate in the control of glucose homeostasis and potentially be a new target of interest in the treatment of type 2 diabetes. To that end the recombinant human Reg3α protein was administered for one month in insulin-resistant mice fed high fat diet. We performed glucose and insulin tolerance tests, assayed circulating chemokines in plasma and measured glucose uptake in insulin sensitive tissues. We evidenced an increase in insulin sensitivity during an oral glucose tolerance test in ALF-5755 treated mice vs controls and decreased the pro-inflammatory cytokine C-X-C Motif Chemokine Ligand 5 (CXCL5). We also demonstrated an increase in glucose uptake in skeletal muscle. Finally, correlation studies using human and mouse muscle biopsies showed negative correlation between intramuscular Reg3α mRNA expression (or its murine isoform Reg3γ) and insulin resistance. Thus, we have established the proof of concept that Reg3α could be a novel molecule of interest in the treatment of T2D by increasing insulin sensitivity via a skeletal muscle effect.

12.
Cells ; 11(11)2022 05 25.
Article in English | MEDLINE | ID: mdl-35681432

ABSTRACT

Cystathionine beta synthase (CBS) catalyzes the first step of the transsulfuration pathway from homocysteine to cystathionine, and its deficiency leads to hyperhomocysteinemia (HHcy) in humans and rodents. To date, scarce information is available about the HHcy effect on insulin secretion, and the link between CBS activity and the setting of type 2 diabetes is still unknown. We aimed to decipher the consequences of an inborn defect in CBS on glucose homeostasis in mice. We used a mouse model heterozygous for CBS (CBS+/-) that presented a mild HHcy. Other groups were supplemented with methionine in drinking water to increase the mild to intermediate HHcy, and were submitted to a high-fat diet (HFD). We measured the food intake, body weight gain, body composition, glucose homeostasis, plasma homocysteine level, and CBS activity. We evidenced a defect in the stimulated insulin secretion in CBS+/- mice with mild and intermediate HHcy, while mice with intermediate HHcy under HFD presented an improvement in insulin sensitivity that compensated for the decreased insulin secretion and permitted them to maintain a glucose tolerance similar to the CBS+/+ mice. Islets isolated from CBS+/- mice maintained their ability to respond to the elevated glucose levels, and we showed that a lower parasympathetic tone could, at least in part, be responsible for the insulin secretion defect. Our results emphasize the important role of Hcy metabolic enzymes in insulin secretion and overall glucose homeostasis.


Subject(s)
Diabetes Mellitus, Type 2 , Homocystinuria , Hyperhomocysteinemia , Animals , Cystathionine beta-Synthase/metabolism , Glucose , Homeostasis , Homocysteine , Homocystinuria/metabolism , Hyperhomocysteinemia/metabolism , Mice
13.
Cell Rep ; 39(10): 110910, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35675775

ABSTRACT

In hepatocytes, peroxisome proliferator-activated receptor α (PPARα) orchestrates a genomic and metabolic response required for homeostasis during fasting. This includes the biosynthesis of ketone bodies and of fibroblast growth factor 21 (FGF21). Here we show that in the absence of adipose triglyceride lipase (ATGL) in adipocytes, ketone body and FGF21 production is impaired upon fasting. Liver gene expression analysis highlights a set of fasting-induced genes sensitive to both ATGL deletion in adipocytes and PPARα deletion in hepatocytes. Adipose tissue lipolysis induced by activation of the ß3-adrenergic receptor also triggers such PPARα-dependent responses not only in the liver but also in brown adipose tissue (BAT). Intact PPARα activity in hepatocytes is required for the cross-talk between adipose tissues and the liver during fat mobilization.


Subject(s)
Lipolysis , PPAR alpha , Adipose Tissue/metabolism , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Hepatocytes/metabolism , Ketone Bodies/metabolism , Lipolysis/physiology , PPAR alpha/metabolism
14.
Front Endocrinol (Lausanne) ; 13: 877999, 2022.
Article in English | MEDLINE | ID: mdl-35498414

ABSTRACT

Overnutrition is associated with the activation of inflammatory pathways in metabolically linked organs and an early hypothalamic inflammation is now known to disrupt the central control of metabolic function. Because we demonstrated that fatty acids (FA) target the pituitary and affect gonadotropin synthesis, we asked whether overnutrition induces pituitary inflammation that may contribute to obesity-associated disorders in the control of reproduction. We analyzed pituitary inflammation and hypothalamic-pituitary-testicular axis in male rats fed a short- (4 weeks) or long-term (20 weeks) high-fat diet. The effect of diet enrichment with the ω3 polyunsaturated FA, DHA, was also analyzed. After only 4 weeks and before weight gain of rats, high-fat diet caused a significant decrease in pituitary gonadotropin and hypothalamic GnRH transcript levels despite unchanged testosterone and inhibin B levels. Contrasting with the hypothalamus, there was no concomitant increases in gene expression of pituitary inflammatory mediators and even a reduction of prototypical cytokines such as interleukin-1ß and TNF-α. No inflammation was still detected in the pituitary after 20 weeks although gonadotropin transcripts and circulating levels were still altered. Gonadotropins were the only pituitary hormones remaining affected at this stage of the regimen, underlying a differential susceptibility of pituitary lineages to metabolic disorders. DHA enrichment of the diet did not prevent alterations of gonadotrope activity due to either a long- or a short-term high-fat diet although it blocked early hypothalamic inflammation and attenuated several metabolic effects. Taken together, our findings suggest that high-fat diet-induced defects in gonadotrope activity in male rats occurred despite a lack of pituitary inflammation.


Subject(s)
Overnutrition , Pituitary Diseases , Animals , Diet, High-Fat/adverse effects , Dietary Fats , Inflammation , Male , Pituitary Gland/metabolism , Rats
15.
Diabetes ; 71(7): 1472-1489, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35472764

ABSTRACT

Mitochondrial glucose metabolism is essential for stimulated insulin release from pancreatic ß-cells. Whether mitofusin gene expression, and hence, mitochondrial network integrity, is important for glucose or incretin signaling has not previously been explored. Here, we generated mice with ß-cell-selective, adult-restricted deletion knock-out (dKO) of the mitofusin genes Mfn1 and Mfn2 (ßMfn1/2 dKO). ßMfn1/2-dKO mice displayed elevated fed and fasted glycemia and a more than fivefold decrease in plasma insulin. Mitochondrial length, glucose-induced polarization, ATP synthesis, and cytosolic and mitochondrial Ca2+ increases were all reduced in dKO islets. In contrast, oral glucose tolerance was more modestly affected in ßMfn1/2-dKO mice, and glucagon-like peptide 1 or glucose-dependent insulinotropic peptide receptor agonists largely corrected defective glucose-stimulated insulin secretion through enhanced EPAC-dependent signaling. Correspondingly, cAMP increases in the cytosol, as measured with an Epac-camps-based sensor, were exaggerated in dKO mice. Mitochondrial fusion and fission cycles are thus essential in the ß-cell to maintain normal glucose, but not incretin, sensing. These findings broaden our understanding of the roles of mitofusins in ß-cells, the potential contributions of altered mitochondrial dynamics to diabetes development, and the impact of incretins on this process.


Subject(s)
GTP Phosphohydrolases , Glucose , Incretins , Insulin-Secreting Cells , Animals , GTP Phosphohydrolases/genetics , Glucose/metabolism , Glucose/pharmacology , Guanine Nucleotide Exchange Factors/metabolism , Incretins/metabolism , Incretins/pharmacology , Insulin/metabolism , Insulin Secretion , Insulin-Secreting Cells/metabolism , Mice , Mice, Knockout
16.
Mol Metab ; 54: 101355, 2021 12.
Article in English | MEDLINE | ID: mdl-34634522

ABSTRACT

OBJECTIVES: To find plasma biomarkers prognostic of type 2 diabetes, which could also inform on pancreatic ß-cell deregulations or defects in the function of insulin target tissues. METHODS: We conducted a systems biology approach to characterize the plasma lipidomes of C57Bl/6J, DBA/2J, and BALB/cJ mice under different nutritional conditions, as well as their pancreatic islet and liver transcriptomes. We searched for correlations between plasma lipids and tissue gene expression modules. RESULTS: We identified strong correlation between plasma triacylglycerols (TAGs) and islet gene modules that comprise key regulators of glucose- and lipid-regulated insulin secretion and of the insulin signaling pathway, the two top hits were Gck and Abhd6 for negative and positive correlations, respectively. Correlations were also found between sphingomyelins and islet gene modules that overlapped in part with the gene modules correlated with TAGs. In the liver, the gene module most strongly correlated with plasma TAGs was enriched in mRNAs encoding fatty acid and carnitine transporters as well as multiple enzymes of the ß-oxidation pathway. In humans, plasma TAGs also correlated with the expression of several of the same key regulators of insulin secretion and the insulin signaling pathway identified in mice. This cross-species comparative analysis further led to the identification of PITPNC1 as a candidate regulator of glucose-stimulated insulin secretion. CONCLUSION: TAGs emerge as biomarkers of a liver-to-ß-cell axis that links hepatic ß-oxidation to ß-cell functional mass and insulin secretion.


Subject(s)
Insulin-Secreting Cells/metabolism , Triglycerides/metabolism , Animals , Biomarkers/blood , Biomarkers/metabolism , Cells, Cultured , Glucose/metabolism , Humans , Insulin Secretion , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred DBA , Triglycerides/blood
17.
Diabetologia ; 64(4): 850-864, 2021 04.
Article in English | MEDLINE | ID: mdl-33492421

ABSTRACT

AIMS/HYPOTHESIS: Variants close to the VPS13C/C2CD4A/C2CD4B locus are associated with altered risk of type 2 diabetes in genome-wide association studies. While previous functional work has suggested roles for VPS13C and C2CD4A in disease development, none has explored the role of C2CD4B. METHODS: CRISPR/Cas9-induced global C2cd4b-knockout mice and zebrafish larvae with c2cd4a deletion were used to study the role of this gene in glucose homeostasis. C2 calcium dependent domain containing protein (C2CD)4A and C2CD4B constructs tagged with FLAG or green fluorescent protein were generated to investigate subcellular dynamics using confocal or near-field microscopy and to identify interacting partners by mass spectrometry. RESULTS: Systemic inactivation of C2cd4b in mice led to marked, but highly sexually dimorphic changes in body weight and glucose homeostasis. Female C2cd4b mice displayed unchanged body weight compared with control littermates, but abnormal glucose tolerance (AUC, p = 0.01) and defective in vivo, but not in vitro, insulin secretion (p = 0.02). This was associated with a marked decrease in follicle-stimulating hormone levels as compared with wild-type (WT) littermates (p = 0.003). In sharp contrast, male C2cd4b null mice displayed essentially normal glucose tolerance but an increase in body weight (p < 0.001) and fasting blood glucose (p = 0.003) after maintenance on a high-fat and -sucrose diet vs WT littermates. No metabolic disturbances were observed after global inactivation of C2cd4a in mice, or in pancreatic beta cell function at larval stages in C2cd4a null zebrafish. Fasting blood glucose levels were also unaltered in adult C2cd4a-null fish. C2CD4B and C2CD4A were partially localised to the plasma membrane, with the latter under the control of intracellular Ca2+. Binding partners for both included secretory-granule-localised PTPRN2/phogrin. CONCLUSIONS/INTERPRETATION: Our studies suggest that C2cd4b may act centrally in the pituitary to influence sex-dependent circuits that control pancreatic beta cell function and glucose tolerance in rodents. However, the absence of sexual dimorphism in the impact of diabetes risk variants argues for additional roles for C2CD4A or VPS13C in the control of glucose homeostasis in humans. DATA AVAILABILITY: The datasets generated and/or analysed during the current study are available in the Biorxiv repository ( www.biorxiv.org/content/10.1101/2020.05.18.099200v1 ). RNA-Seq (GSE152576) and proteomics (PXD021597) data have been deposited to GEO ( www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE152576 ) and ProteomeXchange ( www.ebi.ac.uk/pride/archive/projects/PXD021597 ) repositories, respectively.


Subject(s)
Blood Glucose/metabolism , Diabetes Mellitus, Type 2/genetics , Homeostasis/genetics , Insulin-Secreting Cells/metabolism , Nuclear Proteins/genetics , Transcription Factors/genetics , Animals , Biomarkers/blood , Blood Glucose/genetics , Female , Follicle Stimulating Hormone/blood , Genotype , Humans , Insulin/blood , Male , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Pituitary Gland/metabolism , Sex Characteristics , Weight Gain , Zebrafish/blood , Zebrafish/genetics , Zebrafish Proteins/blood , Zebrafish Proteins/genetics
18.
Biomolecules ; 10(7)2020 07 16.
Article in English | MEDLINE | ID: mdl-32708537

ABSTRACT

OBJECTIVE: Type 2 diabetes (T2D) occurs by deterioration in pancreatic ß-cell function and/or progressive loss of pancreatic ß-cell mass under the context of insulin resistance. α7 nicotinic acetylcholine receptor (nAChR) may contribute to insulin sensitivity but its role in the pathogenesis of T2D remains undefined. We investigated whether the systemic lack of α7 nAChR was sufficient to impair glucose homeostasis. METHODS: We used an α7 nAChR knock-out (α7-/-) mouse model fed a standard chow diet. The effects of the lack of α7 nAChR on islet mass, insulin secretion, glucose and insulin tolerance, body composition, and food behaviour were assessed in vivo and ex vivo experiments. RESULTS: Young α7-/- mice display a chronic mild high glycemia combined with an impaired glucose tolerance and a marked deficit in ß-cell mass. In addition to these metabolic disorders, old mice developed adipose tissue inflammation, elevated plasma free fatty acid concentrations and presented glycolytic muscle insulin resistance in old mice. Finally, α7-/- mice, fed a chow diet, exhibited a late-onset excessive gain in body weight through increased fat mass associated with higher food intake. CONCLUSION: Our work highlights the important role of α7 nAChR in glucose homeostasis. The constitutive lack of α7 nAChR suggests a novel pathway influencing the pathogenesis of T2D.


Subject(s)
Glucose Intolerance/genetics , Hyperglycemia/genetics , Insulin Resistance , alpha7 Nicotinic Acetylcholine Receptor/genetics , Animals , Cell Line , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Female , Gene Deletion , Glucose/metabolism , Glucose Intolerance/metabolism , Hyperglycemia/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Rats , alpha7 Nicotinic Acetylcholine Receptor/metabolism
20.
Mol Metab ; 27S: S147-S154, 2019 09.
Article in English | MEDLINE | ID: mdl-31500826

ABSTRACT

BACKGROUND: Progression from pre-diabetes to type 2 diabetes (T2D) and from T2D to insulin requirement proceeds at very heterogenous rates among patient populations, and the risk of developing different types of secondary complications is also different between patients. The diagnosis of pre-diabetes and T2D solely based on blood glucose measurements cannot capture this heterogeneity, thereby preventing proposition of therapeutic strategies adapted to individual needs and pathogenetic mechanisms. There is, thus, a need to identify novel means to stratify patient populations based on a molecular knowledge of the diverse underlying causes of the disease. Such knowledge would form the basis for a precision medicine approach to preventing and treating T2D according to the need of identified patient subgroups as well as allowing better follow up of pharmacological treatment. SCOPE OF REVIEW: Here, we review a systems biology approach that aims at identifying novel biomarkers for T2D susceptibility and identifying novel beta-cell and insulin target tissue genes that link the selected plasma biomarkers with insulin secretion and insulin action. This work was performed as part of two Innovative Medicine Initiative projects. The focus of the review will be on the use of preclinical models to find biomarker candidates for T2D prediction and novel regulators of beta-cell function. We will demonstrate that the study of mice with different genetic architecture and widely different adaptation to metabolic stress can be a powerful approach to identify biomarkers of T2D susceptibility in humans or for the identification of so far unrecognized genes controlling beta-cell function. MAJOR CONCLUSIONS: The examples developed in this review will highlight the power of the systems biology approach, in particular as it allowed the discovery of dihydroceramide as a T2D biomarker candidate in mice and humans and the identification and characterization of novel regulators of beta-cell function.


Subject(s)
Diabetes Mellitus, Type 2/diagnosis , Insulin/metabolism , Precision Medicine , Animals , Biomarkers/analysis , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Humans , Insulin Secretion
SELECTION OF CITATIONS
SEARCH DETAIL
...